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Our aim is to describe the behaviour of highly filled injection moulding pastes, made of 
a polymer binder and fine ceramic powders. A specific rheometer has been developed to 
characterize this behaviour within the injection range of pressures and shear rates. As 
classical homogeneous models fail to describe the behaviour of the paste, we propose an 
original model deriving from the mixture theory, taking into account the separate 
contributions of binder and powder to the global behaviour of the paste. The qualitative and 
quantitative accuracies of this model are discussed. 

1. Introduction 
The injection moulding of highly filled blends is used 
to produce small and low cost complex shapes. This 
process can be divided into four main stages. First, the 
ceramic or metallic powders are mixed together with 
a molten polymeric binder, in order to obtain an 
homogeneous saturated paste. Second is the forming 
stage which is similar to the injection moulding of 
a thermoplastic. Thirdly the debinding stage consists 
of extracting the binder by dissolving, evaporating, or 
melting it in order to obtain fragile parts exclusively 
composed of powder. Finally, sintering confers to the 
injected parts their final density and mechanical prop- 
erties. 

Several studies [1-5] have shown that numerous 
problems may arise at every stage of the process. 
Classical defects are shape distortion, cracks, bubbles 
or heterogeneities of density at the debinding and 
sintering stages, but it was evidenced, using mainly 
X-ray analysis I-6] that most of those defects were 
initiated during the forming stage, it was also shown 
that the defects could be avoided by controlling the 
injection parameters, such as the injection pressure, 
temperature, mould temperature and dimensions of 
the gates. Fundamentally, the defects arising during 
the mould filling step seem to have two main causes: 
(i) the competition between flow and cooling which 
is also encountered for thermoplastics, and (ii) the 
heterogeneous nature of the paste, i.e. the ability to 
dissociate powder and binder and to create powder 
structures depending on flow conditions and filling 
rate of the blend. 

Our purpose in this paper is to model the injection 
moulding of highly filled p~tstes (60 to 70 vol % powder). 
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Usually, the viscosity of these pastes is described using 
a polymer-like power law, with a relative viscosity 
depending on the volume fraction of powder. But such 
models do not take directly into account the contribu- 
tion of the heterogeneity of the paste to its global 
behaviour, and do not predict possible powder/binder 
segregation. Our model is derived from an extension 
of continuum mechanics, called '?mixtures theory", in 
which each component of the blend brings its own 
contribution to the global behaviour. We intend to 
compare the respective performances of the classical 
method and of our model to the description of the 
behaviour of the paste. 

We wilt initially describe the experimental proce- 
dure used to measure the viscosity of an industrial 
paste. Then, we will progress to show that the classical 
model cannot describe the true behaviour of that 
paste. Our model will then be detailed. We will quali- 
tatively prove its accuracy, and explain the way we 
quantitatively identify the model's parameters. The 
results will then be discussed. 

2. Experimental details 
2.1. Preparation of the suspension 
SNECMA uses this paste to manufacture intricate 
shape foundry cores for superal!oy turbine blades. The 
main components of the binder are a low density 
poly-ethylene (LDPE)-based plasticizer, which confers 
on the binder its main rheological characteristics and 
a fluidizer, which lowers the viscosity, stabilizes the 
fusion temperature and helps debinding. The binder 
behaves globally as a Newtonian wax, showing a low 
fusion temperature (T I ~ 50 ~ and a low viscosity 
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TABLE I Injection moulding machine characteristics 

Machine Allrounder 221-75-350 

Screw diameter 22 mm 
Screw rotation speed 150 rpm 
Screw treated against corrosion 
Maximum pressure 100 MPa 

P2 

Figure 1 Scanning electron micrograph of the powder. 
(R, L) 

Pressure transducers 
&P = P1-P2 

r l~=4 .10 -2Pas  at the working temperature of 
60 ~ The ceramic powder is silica-based, with a large 
particle size distribution. The particle diameter ranges 
from 1 to 100 lam, and a scanning electron micrograph 
of the powder shows sand-like, irregular shaped grains 
(see Fig. 1). 

Various mixture compositions have been prepared 
with powder loadings in the range 50-70 vol%, in 
order to detect the critical solids loading d?c. This 
loading corresponds to the point above which air 
pockets appear in the blend, as there is not enough 
binder left to fill all the voids between the particles. 
qbc is measured by comparing the theoretical densities 
with experimentally measured ones [7]. 

Mixing was performed in a small thermally control- 
led Z-blade apparatus at 100~ for 90min. All 
rheological measurements were carried out on 
a 60 vol % mixture, which is below the critical volume 
fraction qbc. 

2.2. Viscosi ty  m e a s u r e m e n t s  
The capillary rheometer used to measure the viscosity 
of the paste has been designed, built and tested at 
Centre des Mat6riaux [8]. The rheometer has been 
positioned at the end of an injection moulding ma- 
chine, whose characteristics are outlined in Table I. 

Fig. 2 is a schematic diagram of the rheometer. The 
capillaries are commercial alumina and stainless steel 
tubes. The dimensions and nature of the capillaries are 
reported in Table II. The entire apparatus is thermally 
regulated at the working temperature of 60~ The 
imposed flow rate in a capillary is deduced from the 
translation speed of the screw. Two pressure trans- 
ducers are located at each end of the capillaries to 
calculate the pressure drop. The end correction to be 
applied was estimated by using different die lengths 
and was found to be negligible. Details on the 
rheometer instrumentation are reported in Table III. 

The developed rheometer when attached to an in- 
jection moulding machine allows the measurement of 
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Figure 2 Schematic of the capillary rheometer. 

ilS 

TAB LE II Characteristics of the rheometer capillaries 

Internal radius R (ram) Length L (ram) 

Alumina capillaries (Desmarquets AF997) 
0.5 140-125-115-70 
0.75 140-125-115-70 
1.0 140-125-115-70 
1.25 140-125-115-70 
1.5 140-125-115-70 
2.5 115-70 

Stainless steel capillaries (Goodfellow AISI 304) 
0.85 140-125-115-75-70 
1.15 140-125-115-75-70 
2.0 140-125-115-75-70 

T A B L E I I I Instrumentation of the capillary rheometer 

Flow rate control: LVDT 
Maximum course 50 mm 
Resolution 10 gm 

Pressure drop measurement: Dynisco PT435A-5M pressure transducer 
Gauge diameter 8 mm 
Maximum pressure 100 MPa 
Resolution 0.1 MPa 

Acquisition 
Machine PC (80286 microprocessor) 
Acquisition card PC ADDA 12 (Mesurix) 
Maximum acquisition speed 760 Acq s -~ 



the viscosity for a shear rate range close to that of the 
process condition. Typical values of the pressure drop 
and shear rate lie in the range: 

0.1 < AP < 25 MPa 

100 < ~ < 105s -~ 

The thermal regulation system prevents temperature 
gradients within the capillary, but viscous dissipation 
in tile paste is still possible for small radii and high 
shear rates. Temperature measurements at the ends of 
the capillaries were performed. They show that the 
temperature rises in capillaries of internal radii below 
1 ram, and lengths above 125 ram. 

3. Experimental results 
The highly filled paste behaviour differs significantly 
from a single polymer behaviour. A high volume fi'ac- 
tion of powder affects the flow of the paste by forming 
quasi-solid structures which depend mainly on the 
shear rate, or by the creation of a thin depleted fluid 
layer at the walls, thus allowing an apparent sliding of 
the pastes in the dies. Thus all experimental data have 
to be exhaustively controlled. 

The experimentally measured data are the flow rate 
Q, and the pressure drop AP. Typically flow curves 
relating Q and AP for two capillary lengths are drawn 
in Fig. 3. Each of these curves should be unique since 
end correction is negligible with this instrumental ap- 
paratus. The observed difference is due to experi- 
mental dispersion. It is well-known that highly loaded 
pastes show a greater dispersion than does a thermo- 
plastic (20-30%, instead of 10%). It has been "shown 
that this dispersion is related to the volume fraction, 
and also to the particle size distribution of powders. 
The greater the volume fraction and the smaller the 
size distribution, the larger the dispersion, because the 
ability of powder grains to reorder themselves de- 
creases when the amount of powder increases, or when 
the finer particles, playing the role of ball bearings in 
the flow have been eliminated. Fig. 4 shows a typical 
time-pressure curve. The stabilized pressure drop is 
measured after a quite long transient zone, related to 
the reorganisation of powder networks in the die. 

Due to the cost of the powder, rheometry experi- 
ments were conducted with recycled paste. The effect 
of recycling on the pressure measurements is reported 
in Fig. 5. With an increasing number of recycles, the 
dispersion decreases and the pressure drop tends to an 
asymptotic value. Thermogravimetric analysis and 
control of the particle size distribution indicate that 
this decrease is not due to any evolution of the binder 
or the particles. It probably derives from a micro- 
homogenization of the blend, since a higher shear rate 
is developed during the extrusion of the paste in a thin 
capillary compared to that in the mixing pot, when- 
ever the mixing time is very long. 

Analysis of the flow curves is simplified when they 
are plotted in a diagram relating the shear stress at the 
wall % versus the apparent shear rate 4/. 

AP. R 
- 2 t .  ( 1 )  

4Q 
% - rcR3 (2) 

Whatever the die dimensions and the material it is 
made from, if the paste agrees with the four following 
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Figure 4 Typical evolution of the pressure drop at the ends of the 
capillary. 
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Figure 3 Flow curves for the 60 vol% paste (R = 2.5ram). 
( x )  L = l l 5 m m  and (D) L = 70ram. 

Figure 5 Influence of recycling on the measured pressure 
drop. R = 1.5 mm, L = 125 mm, screw speed = 130mms -1. 
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Figure 6 Influence of the tube radius on the flow curves for the 
60v01% paste. (A) R = 0 . 9 m m ,  ( * ) R = l . 2 5 m m ,  ([N) R =  
1.5ram and (x )  R = 2.5 rnm, 

date no one has managed to see such a film. We have 
therefore made the hypothesis that this mechanism is 
present and have tried to analyse the experimental 
curves using Mooney's theory [15]. He performed 
a macroscopic analysis of the slipping phenomenon 
for fully developed, incompressible, isothermal and 
laminar flow in circular tubes. He split the measured 
flow rate Q into a "real" flow rate Qb, resulting 
from the global shear of the paste, and a slip flow rate 
Qs, depending on the slip velocity Vs. The main 
hypothesis made by Mooney is that the slip of the 
paste may be represented as a behaviour law, so that 
the slip velocity depends only on the shear stress at 
the wall. The flow rate in the tube may then be 
expressed a s :  

t 
'R 

Q. = 2~ w(r)r dr (3) 
0 

hypothesis, then there should be only one flow curve, 
called the "master curve" [9]: 

(i) the paste is incompressible; 
(ii) its behaviour is time independent; 

(iii) the experiments are isothermal; 
(iv) the paste sticks at the wall. 

It is seen in Fig. 6 that the results obtained with 
various capillaries lead to separate curves. Hypothesis 
1-3 are satisfied, and thus this observation will be 
analysed in terms of the breakdown of (iv) i.e. the 
existence of slip at the wall. 

4. Discussion 
4.1. The apparent slip at the wall 
In the following discussion we make the assumption 
that the geometry dependence is the consequence of 
wall slipping. The paste is then considered as a ho- 
mogeneous medium which can be characterized in 
terms of a power law behaviour. Wall slipping has 
been observed on many materials and the mechanisms 
have been investigated. Two main tendencies have 
been reported in the literature. First, true slippage at 
the wall, i.e. a real discontinuity of the velocity near 
the wall, has been observed for unfilled polymers or 
elastomer blends, but this could also probably be 
applied to a highly filled blend with a very viscous 
binder [10, 11]. The sliding law is then similar to 
solid-like friction laws. Secondly a phenomenon called 
"apparent slip" has also been observed for polymer 
solutions, suspehsions and filled blends [12-14]. In 
this case the mechanism is different. Near the wall, the 
fluid experiences high shear gradients, and thus the 
powder grains tend to migrate towards the centre of 
the die. A thin depleted binder layer appears at the 
surface of the die, and the mean velocity in this layer, 
in which the viscosity is obviously smaller than the 
global viscosity of the paste, is assimilated in to the 
paste velocity at the wall. 

Considering the mixture studied in this paper, the 
binder showed sticky condition and very low viscosity. 
Thus if slip is present it could only be an apparent slip 
related to the appearance of a thin depleted film. To 

where w(r) is the velocity of the paste in the tube, and 
R is the die radius. Integration by parts of Equa- 
tion 3 leads to: 

f ~  dw(r) Q = [rcr2w(r)] g -  Tcr 2 dr 

On the other hand, the shear rate ~ is defined a s :  

(4) 

dw(r) 
J' = dr = f(z) (5) 

where'z is the shear stress in the paste, with "c/r = 
% / R ,  a n d f i s  a function describing the behaviour of 
the paste. The flow rate Q is then written as a function 
of x: 

/~R3 f0  ~ Q = Qs+Qb = r c R 2 V s ( % ) + ~  f(z)z 2d-c 

(6) 

By combining Equations (2) and (6), we finally ob- 
tain Mooney's formula: 

")a - R t- f(z)z 2 dz (7) 

This formula allows us to evaluate the slip velocity, 
by plotting the apparent shear rate % versus the recip- 
rocal of the die radius (l/R) for a given shear stress at 
the wall %. These curves, (also called Mooney's 
curves), should be straight lines whose slope is related 
to the slip velocity. This method has been successfully 
used by several authors [14, 16]. Mooney's curves are 
plotted for our material in Fig. 7. We immediately 
observed that we did not obtain straight lines, but 
parabolic curves. This infers that Mooney's hypothe- 
sis is not applicable to our paste: the slip velocity, 
defined as the slope of the curves, is dependent on the 
die radius. 

The misfit of Mooney's curve has been previously 
mentioned in the literature for highly filled pastes 
[17-20]. Some authors have proposed laws relating 
Vs, % and the die radius R [21, 22], but these laws are 
purely empirical, without any theoretical basis. Most 
of the authors whose results are not compatible with 
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Figure 7 Experimental Mooney's curves for the 60 vol% paste. 
(A) 10000Pa, (x) 7000 Pa, (*) 5000Pa and (+) 2000 Pa. 

constitutive equations. The corresponding minimum 
volume fraction qbmin is determined from measure- 
ments of the shrinkage on debinded parts. The curve 
showing the evolution of the measured shrinkage 
versus the binder volume fraction slowly increases 
up to d~mi, and abruptly increases beyond this 
value. Experiments gave ~m~, = 57 vol%. This 
model is developed under the assumption that each 
component is incompressible. Unfortunately, air 
cannot be treated in this approach, and the model 
cannot thus be applied to unsaturated blends. In 
turn, this means that the filling rate must be less 
than a critical volume fraction (~, which has been 
experimentally determined to be around 70 vol%. 
Finally, all the following equations should be applied 
within a given range of filler volume fraction 

Mo0ney's analysis mention Wiegreffe's analysis, in 
which he writes: 

~(~) 
V~('Cw, R) - (8) 

4R 

where J3 is called the corrected slip coefficient. 
In fact, such expressions fail to represent an intrinsic 

behaviour law for the paste which is independent 
of the geometry of the considered die. A solution 
may consist in experimentally investigating another 
shear-rate range, or in modifying the surface condi- 
tions at the wall, thus defining a sticking zone 
withir /which it would be possible to identify the 
real behaviour of the paste and thus to isolate the 
second term of Equation 7 [20]. Unfortunately the 
accurate experimental conditions necessary to per- 
form such an analysis, these include several 
rheometers and optimal control of internal die surfa- 
ces, especially those of the capillaries, were not avail- 
able in our case. 

We have simply proven that the rheological behav- 
iour of this mixture can not be described by consider- 
ing the paste as a homogeneous medium with slipping 
condition. We now propose to analyse the observed 
flow curves considering the heterogeneous nature of 
the paste. 

4.2. Analysis of the heterogeneous 
behaviour of the paste 

The theory of mixtures is an extension of continuum 
mechanics. This study is inspired by the works of 
Poitou on extrusion [233. In this paper, we discuss the 
application of the theory of mixtures to the descrip- 
tion of the flow of fwo different components. The 
chosen components are the wax binder and the lubri- 
cated powder. Each component is defined by its veloc- 
ity gi by its volume fraction u~ (i = 1 or p), and by its 
behaviour and boundary conditions. These last as- 
sumptions impose the limitation that the solid volume 
fraction is high enough to consider the powder 
particles as a continuous medium, characterized by 

4.2. 1. M a s s  c o n s e r v a t i o n  
The mass balance for constituent i is written as fol- 
lows: 

dtt pidv = c* dv (9) 

where p~ is the apparent density of constituent i, and 
the mass supply c* represents the mass exchange with 
the other constituent. Since no chemical reaction 
occurs between the ceramic powder and the polymeric 
binder during the filling stage, it is possible to write 
that c* = 0. After suitable manipulation, the local 
form of Equation 9 is extracted: 

5- t  + dlv(pivl) = 0 with 91 = uiYi 

where ?i is the material density of constituent i, which 
represents the mass of this constituent per unit vol- 
ume. The ceramic powder and the wax binder a r e  
assumed to be incompressible (d3,~/dt = 0), thus the 
mass balance reduces to: 

- -  + div(ui#~) = 0 (10) 
at 

Additionally, the volume fractions ui have to verify: 

~ u~ = 0 and ~Su~ 
i=1 i=1 dt 

- 0 

A new equation, characterizing the global incompres- 
sibility of the paste, may then be deduced from the 
sum of the mass conservations: 

div(ui~ + up#p) = 0 (11) 

where 0qg~ + up#p is defined as the mean velocity 
of the paste. Note that, due to the global incom- 
pressibility of the blend, ~ = #'p leads to div(b'~) = 
div(#'p) = 0, and from Equation 10 to (~e = ~ p  = 0. 
This means that the composition of the blend will 
change only if there is a relative movement between 
the two constituents. 
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4.2.2. Balance of momentum 
The balance of linear momentum for each consti- 
tuent is: 

d 
d S f o ,  e , d ~ + f ~ ,  d , =  fvP,T)idv+fv/5 *dr 

(12) 

where Tz = ~ .  r~ is the flux vector representing the 
efforts transmitted through the surface S, bz is the 
external body force exerted on volume Vz (i.e. gravity, 
centrifugal forces . . . .  ), and the momentum supply 
/5* results from drag forces due to the presence and 
motion of the other contituents. The local form of the 
linear momentum is the partial equilibrium of the 
constituent and is obtained from Equation 12: 

dgl 
P~d7 = div(W~) + P~bz +/5" (13) 

For a wax binder and a silica-based powder, with 
a 60 vol % powder fraction, the global viscosity of the 
paste is above 10 Pas, and the powder density is 
Pv = 2.44 g cm- 3. Inertia and gravity terms may then 
be neglected. Equation 13 reduces to a simple Stoke's 
form: 

di---~(~) = --/5* (14) 

As the considered flow is isothermal, it is not useful to 
write the conservations of energy and entropy. 

4.2.3. Constitutive laws and boundary 
conditions 

The main hypothesis on the constituents behaviour is 
that each partial stress depends exclusively on the 
velocity of the associated constituent. If this assump- 
tion were not made, then the identification of the 
material parameters would be impossible. A pseudo- 
plastic fluid behaviour has then been associated to 
both constituents: 

cy~ = - ~ipT + 2Tli~}m'-l)~ with 

~, = (2Tr(~: ~)),/2 (lS) 

where rl~ is the consistency of the component, m~ is its 
melt flow index. ~ is the generalized shear rate for the 
constituent. In the present study, the binder shows 
a Newtonian behaviour, so that mb= 1 and mp= m. 

According to the binder's fluidity, it seems reason- 
able to let it stick at the wall: 

= 0 (16) 

The lubricated powder may also stick at the wall, but 
the flow of highly filled pastes in moulds or dies 
sometimes evidences wall effects, such as apparent slip 
at the wall. That slip is commonly related to the 
appearance at the surface of the blend of a thin de- 
pleted fluid layer, due to particle migration towards 
the centre of the die [-14, 19]. The slipping law asso- 
ciated to the lubricated powder is: 

% = - - fv (v ; -  w t) (17) 
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where ~p is the shear stress at the wall,fp is the friction 
coefficient, w t is the tangential velocity of the wall 

t is the tangential velocity (usually, w t =  0), and vp 
of the powder. The condition of non-penetration 
yields! 

vp.n = w.n  (18) 

where ti is the outside normal vector on the wall. 
On the free surface a t  the outlet of the mould, the 

boundary condition on both constituents describes 
a local equilibrium with the outer medium: 

Pp q- Pb = Patm (19) 

where Pb and Pp are the partial pressures associated 
to the constituents, and Patrn is the atmospheric 
pressure. 

Although more general forms have been proposed 
[24-26], the authors who have tried to relate those 
equations to experiments generally admitted that the 
momentum supply was as equally well described by 
Darcy's law [27, 28]: 

/5* = --/5~ = k(fb-- gp) (20) 

where k is the interaction coefficient relating the pow- 
der and the binder. According to Darcy's law, k is the 
ratio of the fluid viscosity to the powder bed permea- 
bility ~. In this model, k will be considered constant, 
and identified a posteriori, from rheological tests on 
the paste, but the former definition suggests a depend- 
ence of k on the powder volume fraction, through the 
permeability term. 

4.2.4. General equations 
The unknowns of the problem are the velocities ~ and 
~p, and the volume fractions ~z and % of the defined 
constituents: the binder alone, and the lubricated pow- 
der. Substituting in Equation 14 the partial stresses 
and the momentum ~supply with their expressions 
given in Equation 15 and Equation 20 yields: 

%gradp + div(2rlb~b) = -- k(~b--~5 v) (21) 

%gradp  + div(2rlp~ " -1 )~)  = k(~b-- ~p) (22) 

We will from now on consider the particular case of 
laminar stationary flows in rheometer dies. For both 
constituents, apart from their relative motion, the flow 
lines are straight and parallel to the axis of the flow, 
which leads to div(gl)= div(gp)= 0. The mass bal- 
ance, Equation 10, is then naturally satisfied, and there 
will be no evolution in the composition of the blend 
for those flows. The remaining equations for the 
model are Equation 21 and Equation 22, together 
with Equation 11, the boundary conditions being de- 
scribed by Equations 16-19. 

4.3. Analysis of the apparent slip at the 
walls using a reduced model 

Our objective is to analyse the laminar stationary flow 
of a heterogeneous paste in a preselected geometry, 
e.g. a capillary of radius R and length L. Consideration 



of the reduced equations for the model, written for two 
Newtonian constituents both sticking at the walls of 
the die, allows us to discuss analytic expressions. In 
this case, the solution of the movement equations is 
expressed in terms of the Bessel function Io: 

AP AP 
vt(r) = 4L(n~ + qp") (R2 - r2) + 0) 2 - ~  

( 1 ~,). (Io(e~r) 1)(23a) 
x q, + np -~l \Io(o~R) 

AP AP 
v~(r) - 4L(q~ + rl~) "(R~ - ra) + r 

where c0 = ( k(qz + qp))l/2 

j 

and Io(cOr)= ~ (~-r-r)2" 
.~=o22"n!(n + 1)! 

Note that m only depends on the material character- 
istics. 

The volume flow rate in the capillary is defined in 
terms of the mean velocity of the paste: 

Q = f Z, r {=,v,(r) + apVp(r)} dr (24) 

Using Equations 23a and 23b, and after some re- 
arrangement, Equation 24 becomes: 

APrcR 4 21tAPR (Ii(o)R) ~ )  
Q = 8L(ri, + rlp) 4 Lo3~.\io(o~R) 

X rlz -I- rip rip ~t// 

where Ii(cor) = , , ~ o Z U + ~  + 2)! (25) 

This equation may be written in a more manageable 
form by introducing an effective viscosity of the mix- 
ture rl*, defined as q* = qt + qp 

The combination of Equation 25, with Equation 1 
and Equation 2 leads to an expression of the apparent 
shear rate function of the shear stress at the wail 
% and of the tube radius R which is analogous to 
Mooney's formula: 

% 16% (II(oR) o)R~ ( 1  o~ 2 ot~ 
7" - q* Fo~-~gRg'\lo(coR) 5/'\q-* qp -~z/ 

(26) 

The first term on the right-hand side of this equation 
describes the behaviour of a homogeneous Newton- 
ian sticking fluid in which the viscosity is the effective 
viscosity q*. The second term of the equation derives 
from the heterogeneity of the paste, and shows that the 
flow curves deduced from this model depends explicit- 
ly on the die radius R, for a given set of constituent 
characteristics. This equation has obviously the same 
form as Mooney's formula, 'Equation 7, with an extra 
geometric dependency. 

While e0 is a dimensionless term, containing exclus- 
ively the characteristic parameters of the material, we 
may plot the apparent fluidity (%/%.) against (1/mR) 
as a master Mooney's curve (see Fig. 8). 

Reasonable values for co lie in the range 10 .2 < 
co < 104, and this curve exhibits three distinct zones: 

(i) low values of mR (o~R < 1) are nonsensical values. 
(ii) Higher ~oR values correspond to a polynomial 

quadratic curve for the second term of the equa- 
tion, which means that for a given mixture (i.e. for 
a given co), the apparent shear rate depends on 
(1/R z) at a given %. This result is very interesting, 
because it leads to a late justification of Wie- 
greffe's analysis (see Equation 8 [18, 19,22]). 
Note that this dependency is not the consequence 
of a discontinuity in the velocity at the interface 
between the material and the mould, but is due to 
a relative motion of the two pliases. 

(iii) As mR becomes large, the first term of Equation 
26 becomes predominant, and we find a Newton- 
ian fluidity. The material may then be considered 
homogeneous, due either to a high value of the 
tube radius, the interaction coefficient k, or of the 
(riSqt) ratio. 

The previous conclusions are very important 
since they mean that within a given range of capillary 
size, the behaviour of a mixture may be described 
using a classical polymer law. This assessment should 
now be verified with other types of flows, such 
as flow through plates. The solution of the move- 

for a flow through a plate of ment equations is, 
height h: 

_ Zw 12Zw 1 % (27) 
7a I]* o12h2" q--* Tip "qtJ 

Fig. 9 shows these two analogous equations, involv- 
ing the same invariants for the material q*, ~0 and 
( l /q*  - %/ripZ - 0t~/q~). Both curves have the same 
shape: 

(i) a zone for high values of mR (or oh), in which the 
mixture behaves as a homogeneous polymer, with 
an effective viscosity q*, 

10 

Effects of 
! 

geometry y 

1 Apparent [ / 
# homogenebus / 

behaviour i / I  
~-~ !Slope 2 : y / j  Unphysica, zone 

< 
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Figure 8 Simulated fluidity curve for a heterogeneous Newtonian 
paste. 
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Figure 9 Simulated fluidity curves for (E3) capillaries and 
( x ) plates. 

(ii) a zone of lower mR (or coh), in which the apparent 
shear rate depends on the geometry of the die. It is 
worth noting that the transition arises for the same 
range of R and h. Thus, this simplified form of the 
model may be applied in every mould geometry 
having the same thickness. 

Equations 23a, b ~ 7  have been derived in the case 
of two Newtonian constituents. However, injection 
blends usually show a pseudoplastic behaviour. 
Unfortunately for the present theory, global pseudo- 
plasticity cannot be obtained with Newtonian con- 
stituents. This model then requires a non-Newtonian 
law for the particle behaviour. The corresponding 
equations have no analytical solutions. Therefore, the 
model has been implemented into a finite element 
code in order to predict the behaviour of more sophis- 
ticated mixtures. Calculations have been performed 
with a Newtonian fluid (qz = 0.04Pas) and 
a pseudoplastic lubricated powder (qp = 75 Pas, 
m = 0.75), related by a low interaction term (k = 
5 Pa s m m -  2). The chosen geometries were capillaries, 
with various radii R. We plot in Fig. 10 the global flow 
curves giving ~, against ?, for the different geometries. 
Once again, we see distinct flow curves, showing 
a power-law behaviour. We note that the slope of 
these curves, and consequently the global melt flow 
index rfi of the mixture also depends on the die radius, 
with m < r~ < 1. Obviously, such curves cannot be 
analysed through Mooney nor Wiegreffe's theories. In 
order to make an analogy with the previous results, we 
plot the apparent fluidity curves ?~/(%)(~/~) against 
1~mR in Fig. 11. Each one corresponds to a given wall 
shear stress. We observe the same three zones ob- 
tained with the reduced expression, Equation 26, and 
it seems that Mooney's formula should be expressed in 
the following way: 

?a - 3m \ ~ ]  + h  %,m,{mR}, 

X 0~p 

qp ql 
(28) 

where we again find the first homogeneous term, and 
also a second polynomial term depending on the het- 
erogeneous invariants. 
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Figure 11 Simulated fluidity curves for a heterogeneous pseudo- 
plastic paste. (hi) 50 000 Pa and (A) 10 000 Pa. 

The conclusions of this analysis are, first, that this 
model makes it possible to take into account the effect 
of the die radius on the behaviour of the pastes, by 
considering exclusively the volumetric separation of 
the binder and of the powder, apart from all slipping 
effects. Conversely, the knowledge of the material 
parameters for our model allows us to predict whether 
the dependence on the mould geometry will be deter- 
minant during the flow of the paste. Finally, because 
we cannot extract the analytical expressions for 
a pseudoplastic blend, a finite element tool was re- 
quired to predict the global behaviour of the paste. 
This tool allows us to identify the model's parameters. 

4.4. Identification process for the 
heterogeneous parameters 

The present model requires the determination of four 
material parameters: rh, rlp, m and k. They have been 
identified from the experimental results presented in 
Section 2. Some of the parameters have been fixed. 
The viscosity q~ of the binder in the mixture has 
been taken to be equal to the viscosity of the binder 
itself, which was known from Couette measurements 



(see Section 2.1). On the other hand, the dispersion of 
the rheometric measurements on the paste do no 
allow us to estimate precisely the variation of the 
global melt flow index N as a function of the die radius 
(see Fig. 6). Hence, we assumed that rh = m ~ 0.75. 
Eventually, we only need to fit the lubricated powder 
consistency qp, and the interaction coefficient k. 

The identification process is represented in Fig. 12. 
The finite element code allows us to simulate the flow 
of the heterogeneous blend in several tubes of known 
radius and length. For  a given flow rate, the code 
estimates the global pressure drop at the ends of the 
tube. The simulated flow curves % against % and 
Mooney's curves ~ against (l/R) are then plotted 
against the corresponding experimental curves, and 
the unknown parameters are adjusted to fit the experi- 
ments. 

The best agreement was obtained with the following 
set of heterogeneous parameters: 

qg = 0.04Pas,  rip = 75Pas ,  m = 0.75 

k = 5 P a s m m  -2 

Experimental data and numerical simulation are com- 
pared in Fig. 13. We note that the interaction coeffic- 
ient k is very low, and that, due to the very low binder 
viscosity, the lubricated powder characteristics are 
close to the global blend characteristics. Once the 

(F,N,TE ELEMENTOOOE ) 

( Comparison 
| Calculated / [ No agreement 
~ e~xpe!imental results.~ 

ment 

parameters have been identified from a set of capillary 
experiments, we must validate this approach on other 
experiments. 

4.5. V a l i d a t i o n  of  the  m r d e l  
The validation consists of an injection at a fixed flow 
rate in an instrumented axisymmetric plate (see 
Fig. 14). A technique called "volume control" is used 
to simulate the filling of the mould. Note that the solid 
volume fraction is set constant and equal to its initial 
value. Further details can be found in references [29] 
and [30]. Numerical and experimental data are com- 
pared in terms of the evolution of the pressure drop 
between the transducers set at R = 10mm and 
R = 20 mm against time (see Fig. 15). The calculated 
data obviously do not  fit the experimental data, al- 
though the scale of pressures is convenient. Since the 
mean value of the pressure drop is very sensitive to the 
interaction coefficient, we found that a good agree- 
ment could be obtained for a higher interaction coef- 
ficient of 15 Pa s m m -  2 (instead of 5 Pa s m m -  2). But 
this value does not fit the capillary results. The failure 
of the model to fit both experiments indicates that the 
model is not sophisticated enough. We suspect the 
interference of wall effects, since the axisymmetric 
mould is made of aluminium, while the rheometer 
capillaries are made of alumina. Hence, we carried 
out further rheometric experiments, using untreated 
stainless steel capillaries. The Mooney's curves ob- 
tained for stainless steel and alumina capillaries are 

R(Transducer) = 4mm 

/ ~ .  " , , ~  D(Gate) = 6mm 

~ Position of the 
R(Mould) = 35ram_j/ ! ~ 3 0 m m  pressure transducer 

a - Front v iew b - Side v iew 

Figure 14 Scheme of the axisymmetric instrumented mould. 

Figure 12 Identification process of the model parameters qp and k. 
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the 60 vol% paste. 

Figure 15 Experimental and simulated pressure drop in the axisym- 
metric plate. 
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represented on Fig. 16. The mismatch of the two sets 
of curves suggest that the global behaviour of the 
paste includes wall effects in addition to powder bind- 
er relative movement. Further developments of the 
model should take into account friction laws. 

5. Conclusions 
Rheological measurements have been performed on 
highly loaded polymers. Several diameters have been 
used in order to analyse slip problems. The range of 
the selected geometries is quite large. Apparent slip at 
the wall was observed, and a Mooney's analysis in- 
dicated a slip velocity depending on both wall shear 
stress and die radius. This last dependancy is very 
disturbing since a friction law could not depend on 
geometric factors. Thus the rheological behaviour of 
such blends cannot be described like a homogeneous 
medium with a friction law. 

A heterogeneous model has been derived from the 
mixture theory. The main assumption is that each 
component is characterized through its own .volume 
fraction, velocity, constitutive equation, and boundary 
conditions. A momentum supply is introduced to take 
into account the interaction of the binder with the 
powder. The simplest form of this supply is a Darcy's 
law. Extensive analysis of this model showed that the 
simulated flow curves, obtained with both constitu- 
ents sticking at the wall, depend on the die geometry, 
with a dependency different from a Mooney's depend- 
ency. Much more interesting is that this dependency is 
similar to a Wiegreffe's model based on a slip velocity 
depending on (l/R). 

The proposed model has been tested on an indus- 
trial paste. The coefficients were determined using 
a finite element code. A set of parameters were found, 
and a good agreement was observed between numer- 
ical simulations and experimental data. A last valida- 
tion was then performed. Pressure drop measurements 
have been done during the filling of an axisymmetric 
disk. A mismatch was observed between the predic- 
tion of the model and the experimental data. It sug- 
gests that the proposed model is not sophisticated 
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enough. In particular, a friction law for the powder 
constituent is not yet introduced into the model. This 
development should be guided by other accurate 
rheological measurements. 
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